無理數很有趣,極為巧妙小數點后的世界上最數學數字永不循環地延續下去,但整個數字總是短的的證hth最新官網下載小于一個固定值,這就有點難搞了?論文理性沒有錯,我所說的系列就是π。在這里,尼文我們將討論一個半頁紙的關于證明,證明這個數字π的π無無理性。
- 伊萬-尼文(Ivan Niven)
人類文明知道π以及它與圓的周長和面積的關系已經有幾千年了,可以追溯到古代巴比倫人,世界上最數學當時最后的短的的證猛犸象已經滅絕了。然而,論文理性盡管π的系列估值從3到3.12再到3.14等等,但π的尼文無理性本質直到1760年才被瑞士學者約翰·海因里希·蘭伯特發現并證明,后來又被其他著名數學家如埃爾米特、關于卡特萊特、布爾巴基和拉茨科維奇證明。
這些證明中,伊萬·尼文的證明用簡單易懂的數學工具及矛盾方法,將其壓縮在半頁紙里。讓我們來看看。
首先假設π是一個有理數,可以表示為π=a/b,其中a&b是整數,b≠0。讓我們考慮一個函數:
我們可以改變n,從1到任意數n的數,來創建一個多項式F(x):
現在,回到f(x),很明顯,當n!與f(x)相乘時,分母是1,因此對于任何x,f(x)值都是一個整數。所以:
現在,如果你考慮右手邊,(a -bx)^n中x的最小冪是0,即a^n,當它與x^n相乘時,結果中x的最小冪是n,最大是n+n=2n。
如果對f(x)進行微分,當x=0或(a-bx)=0=>x=a/b=π(如前所述)時,結果總是0,因為分子中的所有項都有x。現在,讓我們對{ F'(x)sin x - F(x)cos x}對x進行微分:
經過一點點簡化,我們得到了一個結果:
我們知道,積分是微分的逆運算,反之亦然。因此,如果我們對f(x)sin x進行積分,也就是對{ F'(x)sin x - F(x)cos x}進行微分后得到的結果,得到{ F ' (x) sin x - F(x) cos x} 在0到π的范圍內的積分:
這里π = a/b。就像我們之前說過的,F(π) + F(0)是一個整數,當F(x)微分任意次數時,我們得到的結果是x = a/b = π和x = 0。
但由于f(x)是一個多項式函數,對于0
所以積分是正的,但實際上對于一個非常大的n值來說是不成立的,因為常數或上界在更大的n值中趨向于0。
換句話說,本應該對任何n值都有效的積分在更大的n值時不成立。因此,有兩個地方可能出了問題,要么是在積分過程中出現了錯誤,要么是π實際上不能寫成a/b。但如果你用多種方法來驗證積分過程,結果總是一樣的,那么只剩下一個選擇:π≠a/b,也就是π是無理的。
雖然現在有很多人記住了π后面的很多位小數,但只有少數人知道如何證明它的無理性。雖然有很多證明,但伊萬-尼文的證明是最簡明的。如果認為這是理所當然的,那就失去了數學所能提供的所有樂趣。
小編推薦:
世界上最短的數學論文系列——尼文關于π無理性的證明,極為巧妙是一款高性能的軟件,符合大家要求,軟件免費無毒,擁有絕對好評的軟件,我們kiayun手機版登錄軟件園具有最權威的軟件,綠色免費,官方授權,還有類似 荷蘭國家隊大名單:范戴克、德容領銜,賴因德斯、弗林蓬入選、 一時間不知道羨慕誰,王一博與德約科維奇合影并收獲簽名球衣、 泉州就業困難人員 申領社保補貼將更便捷、 30歲家喻戶曉,40歲在劇組發現意外懷孕,生下兒子,丈夫很寵她!、 好好學習!天天向上!山東泰山官方發布京魯大戰海報、 今日泉州市區開展不禮讓斑馬線專項整治 志愿者將上路勸導、 希望大家前來下載!
您的評論需要經過審核才能顯示
有用
有用
有用